Entropy and Hadamard Matrices
نویسنده
چکیده
The entropy of an orthogonal matrix is defined. It provides a new interpretation of Hadamard matrices as those that saturate the bound for entropy. It appears to be a useful Morse function on the group manifold. It has sharp maxima and other saddle points. The matrices corresponding to the maxima for 3 and 5 dimensions are presented. They are integer matrices (upto a rescaling.)
منابع مشابه
ar X iv : m at h - ph / 0 20 60 18 v 1 1 3 Ju n 20 02 ENTROPY AND HADAMARD MATRICES
The entropy of an orthogonal matrix is defined. It provides a new interpretation of Hadamard matrices as those that saturate the bound for entropy.It appears to be a useful Morse function on the group manifold. It has sharp maxima and other saddle points. The matrices corresponding to the maxima for 3 and 5 dimensions are presented. They are integer matrices (upto a rescaling.)
متن کاملWeak log-majorization inequalities of singular values between normal matrices and their absolute values
This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$. Some applications to these inequalities are also given. In addi...
متن کاملMatrices with banded inverses: Inversion algorithms and factorization of Gauss-Markov processes
The paper considers the inversion of full matrices whose inverses are -banded. We derive a nested inversion algorithm for such matrices. Applied to a tridiagonal matrix, the algorithm provides its explicit inverse as an element-wise product (Hadamard product) of three matrices. When related to Gauss–Markov random processes (GMrp), this result provides a closed-form factored expression for the c...
متن کاملOn the classification of Hadamard matrices of order 32
All equivalence classes of Hadamard matrices of order at most 28 have been found by 1994. Order 32 is where a combinatorial explosion occurs on the number of inequivalent Hadamard matrices. We find all equivalence classes of Hadamard matrices of order 32 which are of certain types. It turns out that there are exactly 13,680,757 Hadamard matrices of one type and 26,369 such matrices of another t...
متن کاملFinding a Hadamard Matrix by Simulated Quantum Annealing
Hard problems have recently become an important issue in computing. Various methods, including a heuristic approach that is inspired by physical phenomena, are being explored. In this paper, we propose the use of simulated quantum annealing (SQA) to find a Hadamard matrix, which is itself a hard problem. We reformulate the problem as an energy minimization of spin vectors connected by a complet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008